Muestras citológicas para el estudio de mutaciones de EGFR y KRAS en cáncer de pulmón de célula no pequeña

Caroline Becker; Enric Carcereny Costa; Felipe Andreo García; Eva Castellá; Mariona Lletjós Sanuy; Teresa Morán; Erika Mijangos Basterra; José Sanz Santos; Carmen Centeno Clemente; Edwin Mejía; Juan Ruiz Manzano

Servicios de Neumología, Oncología Médica y Anatomía patológica

INTRODUCCIÓN

- Los avances recientes en el tratamiento dirigido en cáncer de pulmón de célula no pequeña han obtenido buenos resultados en la enfermedad avanzada.
- La capacidad de interpretar los perfiles moleculares de tumores es crucial para la eficacia de las estrategias de tratamiento personalizado.
- Se están investigando nuevos fármacos que mejoran la supervivencia en pacientes con enfermedad avanzada.

INTRODUCCIÓN

- Para la realización de estudios moleculares habitualmente se utilizan muestras histopatológicas obtenidas por biopsias o piezas quirúrgicas.
- Generalmente se ha considerado que las muestras citológicas era menos probable que fuesen adecuadas para la realización de estos estudios moleculares.

OBJETIVOS

- Evaluar la validez del uso de las muestras citológicas para la realización de estudios moleculares.
- Determinar la presencia de mutaciones de los genes del EGFR (Epidermal growth factor receptor) y de KRAS (Kirsten rat sarcoma viral oncogen) en pacientes con cáncer de pulmón.
- Comparar el rendimiento de la membrana y el bloque celular.

MATERIAL Y MÉTODOS

- Estudio retrospectivo
- Febrero de 2007- Mayo de 2012
- 227 muestras citológicas → mutaciones de EGFR y/o KRAS en pacientes con carcinoma de pulmón de célula no pequeña tratados en HUGTiP.
- √ Líquidos biológicos
- ✓ Punción transtorácica con aguja fina guiada por TAC
- ✓ Punción con aguja fina transbronquial convencional
- ✓ Cepillado bronquial
- ✓ Punción aspiración transtraqueal/transbronquial guiada por USEB
- ✓ PAAF de otros tejidos

MATERIAL Y MÉTODOS

Servicio de Anatomía Patológica; bloques celulares o extensiones en membrana

Laboratorio de biología molecular-Oncología Médica;

✓ Las células tumorales eran seleccionadas por microdisección (8-150)

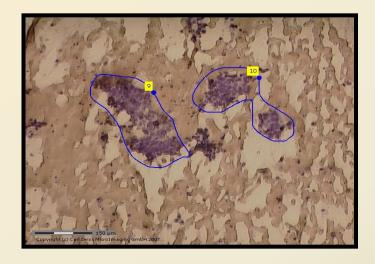
✓Se realizaba secuenciación del ADN-exones 18, 19, 20, 21 del gen EGFR y la de los codones 12 y 13 para el gen KRAS

Análisis de mutaciones en los genes EGFR y KRAS

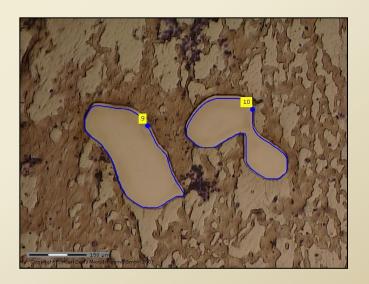
- Aislamiento del ADN tumoral; técnicas de Microdisección Láser (equipo Zeiss-Palm) a partir de los cortes o de las extensiones
- El ADN se extrajo mediante técnica de fenol/cloroformo, con posterior precipitación con alcoholes
- Una vez aislado el ADN tumoral, se analizaron las mutaciones siguiendo los protocolos:

EGFR:

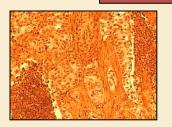
- ✓ Deleciones en el exón 19 mediante GeneScan.
- ✓ Mutaciones L858R en exón 21 mediante ensayo TaqMan.
- ✓ Mutaciones T790M en exon 20 mediante TaqMan en presencia de un PNA (protein nucleic acid) especifico que inhibe la amplificación del alelo WT durante la PCR


KRAS:

✓ Los codones 12 y 13 mediante secuenciación automática (método de Sanger).



Microdisección

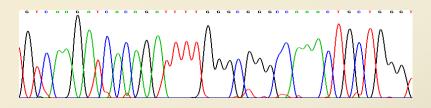


Análisis Mutaciones EGFR

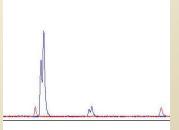
Microdisección por laser

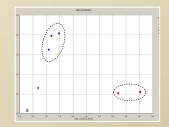
Extracción del ADN

Amplificación PCR



Exon 18: 350 bp


Exon 19: 300 bp


Exon 21: 350 bp

Discriminación alélica

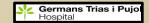
Origen de las citologías

MUESTRAS	N (%)
BAS	20 (7.8%)
BAL	6 (2.3%)
Esputo	2 (0.78%)
Líquido pleural	30 (11.7%)
Líquido pericárdico	7 (2.73%)
LCR	1 (0.39%)
Adenopatías mediastínicas	117 (45.7%)
Adenopatías periféricas	23 (8.98%)

MUESTRAS	N (%)
Cepillado Bronquial	2 (0.78%)
Masa pulmonar	29 (11,3%)
Masa hiliar	7 (2,73%)
Masas mediastínicas	3 (1.17%)
Nódulos pulmonares	2 (0.78%)
Tejidos Blandos	1 (0.39%)
Hueso	3 (1.17%)
Hígado	3 (1.17%)

RESULTADOS

Mutaciones de EGFR


- 227 muestras; mutación en un 8,81% (20/227).
- Rendimiento: **86,3%** (no evaluables 15 muestras, muestra insuficiente en 8, no tumor en 4 y no realizado en 4)

Mutaciones de KRAS

- 41 muestras; mutación en un **14,6%** (6/41).
- Rendimiento: **80,5%** (33/41) (2 no evaluables, 3 muestra insuficiente, 1 no tumor y no realizado en 2)

2 técnicas de preparación de las muestras: Bloque y membrana celular

- Rendimiento para la membrana: **91,1%** (72/79); no fue posible en 7 casos (4 no evaluables, 2 insuficientes y 1 no realizado)
- Rendimiento del bloque celular: **83,3%** (124/148); no fue posible en 23 casos (11 no evaluables, 6 insuficiente, no tumor en 4 y no realizado en 3)

CONCLUSIONES

- El análisis de las mutaciones de EGFR y KRAS en muestras citológicas es factible y tiene un alto rendimiento.
- Las muestras citológicas se pueden obtener a partir de una gran variedad de tejidos y de técnicas diagnósticas.
- Debe ser una opción a considerar en la práctica clínica habitual considerando que en la actualidad el estudio anatomopatológico de pacientes con CPNCP, en muchas ocasiones, se puede ver limitado a los análisis citológicos.

GRACIAS